DEOXYGENATION OF OXIRAN COMPOUNDS TO OLEFINS BY [Fe₄S₄(SC₆H₅)₄]²⁻ IN THE PRESENCE OF NaBH₄

Takashi Itoh^{a),1)}, Tetsuo Nagano^{a)}, Mitsuo Sato^{b)} and Masaaki Hirobe^{a)*} ^{a)}Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan ^{b)}Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa, Sagamiko 199-01, Japan

Abstract: The dianion complex $[Fe_4S_4(SC_6H_5)_4]^{2-}$ caused deoxygenation reaction of oxiran compounds to olefins in the presence of NaBH₄. The reduced form $[Fe_4S_4(SR)_4]^{3-}$ was suggested as an active reductant in this reaction.

Comparison of physicochemical properties between the active sites of non heme iron-sulfur proteins²) and the synthetic polynuclear complexes [Fe₄S₄(SR)₄]ⁿ⁻ has revealed n = 1, 2 and 3³) to be excellent analogs of the active sites of super-oxidized form, oxidized form⁴) and reduced form⁵) of the proteins, respectively. Holm has reported⁶) that anaerobic electrochemical reduction of dianions [Fe₄S₄(SR)₄]²⁻ allows generation of the corresponding trianions [Fe₄S₄(SR)₄]³⁻. Also, the trianions have been prepared by Na/Hg or sodium acenaphthylenide employed as the reducing agent.⁶) We have already reported⁷) the following reductions by the dianion complex and reductant systems; the formation reactions of *cis*-stilbene,⁸) amines,⁹) aromatic amines and hydroquinones,¹⁰ from diphenylacetylene, imines, aromatic nitro compounds and quinones, respectively. Inoue et al. have also reported some organic reactions by the dianion complex and reductant system.¹¹)

We found the formation of the trianion complex [Fe₄S₄(SR)₄]³⁻ in the reaction of the dianion complex [Fe₄S₄(SR)₄]²⁻ and NaBH₄. This paper shows the deoxygenation of oxiran compounds to the corresponding olefins by the trianion complex generated from the dianion complex and NaBH₄. In a typical experiment, the complex (nBu₄N)₂[Fe₄S₄(SC₆H₅)₄] (0.1 mmol) was added under an Ar atmosphere to the CH₃CN (10 ml)/C₂H₅OH (10 ml) solution of the trans-stilbene oxide (0.5 mmol) and NaBH₄ (10.0 mmol) and the reaction mixture was stirred at 25°C. After stirring for 3 hr, trans-stilbene was obtained in a 75% yield. cis-Stilbene oxide was deoxygenated to trans-stilbene (65%) and cis-stilbene (28%). B-Methylstyrene oxide, styrene oxide and 2-octene oxide were also deoxygenated to β-methylstyrene, styrene and 2-octene, respectively, as shown in Table I. The maximal yield was obtained after stirring for 3 hr. The complex was essential for the deoxygenation, because the yields were extremely low (0~8 %) even in the presence of NaBH₄ when, instead of the complex, FeCl₂, FeCl₃, C₆H₅SH, Na₂S, FeCl₃ + C₆H₅SH or FeCl₃ + Na₂S + C₆H₅SH was used. Using EPR spectroscopy, the complex [Fe₄S₄(SC₆H₅)₄]²⁻ was shown to be reduced to [Fe₄S₄(SC₆H₅)₄]³⁻ by NaBH₄. When the complex $(nBu_4N)_2[Fe_4S_4(SC_6H_5)_4]$ was allowed to react with excess amounts of NaBH₄ in CH₃CN/CH₃OH, the axial EPR signal was observed in the reaction solution (Fig. 1), whereas the dianion complex was EPR-inactive in the absence of NaBH₄. The formation of the reduced state was confirmed by comparison with the EPR spectral data reported by Holm.¹²⁾ As shown in Fig. 1, the peak intensity increased with lowering temperature for the measurement of EPR spectra. which is in accord with the data reported by Holm. In addition, the signal of the EPR spectra depended on the solvent. Using CH₃CN only as solvent, the dianion complex was EPR-inactive

Chart 1

$$R_1CH-CHR_2 \left[\frac{Fe_4S_4(SC_6H_5)_4}{NaBH_4} \right]^2$$

 $R_1CH=CHR_2$

Table I Deoxygenation of oxiran compounds by $(nBu_4N)_2[Fe_4S_4(SC_6H_5)_4]$ and NaBH₄

run	substrate	product(s) (%)
1	trans-stilbene oxide	trans-stilbene (75)
2	<i>cis</i> -stilbene oxide	<i>cis</i> -stilbene (28) <i>trans</i> -stilbene (65)
3	β-methylstyrene oxide ^{a)}	β-methylstyrene (70)
4	styrene oxide	styrene (35)
5	2-octene oxidea)	2-octene (30)

The reaction conditions are shown in the text. a) mixture of *cis*- and *trans*-forms.

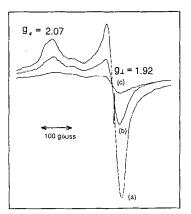


Fig. 1 Temperature dependence of EPR spectra of CH_3CN/CH_3OH solution of $(nBu_4N)_2[Fe_4S_4(SPh)_4]$ and NaBH₄. Spectrometer settings: microwave power, 5 mW; frequency, 9.03 GHz; modulation amplitude, 5 G. (a) 39 K, (b) 49 K, (c) 61 K.

even in the presence of NaBH₄. We examined the effect of alcohol on the yield in the deoxygenation of *cis*-stilbene oxide to stilbene. When CH₃OH, C₂H₅OH, n-C₃H₇OH or iso-C₃H₇OH was added to the CH₃CN reaction solution, the yield was 73, 93, 90 or 68 %, respectively. However, in CH₃CN only, the dianion complex-NaBH₄ system carried out the deoxygenation of oxiran compounds in an extremely low yield. Protic solvents such as CH₃OH, C₂H₅OH, n-C₃H₇OH and iso-C₃H₇OH were shown to be essential for the fermation of the trianion complex and for the deoxygenation of oxiran compounds. Though the mechanism of this solvent effect is unclear yet, it is noteworthy that the dianion complex can not be reduced to the trianion complex in the absence of protic solvents.

Since NaBH₄ can be easily handled as a reductant even by a biochemist, the dianion complex-NaBH₄ system should be useful not only for the development of novel reductants for use in organic reduction but also for the elucidation of the enzymatic mechanism of HP or Fd proteins.

References and Note

1) Present address: School of Pharmaceutical Sciences, Showa University, Hatanodai, Shinagawa-ku, Tokyo 142, Japan. 2)a) W. Lovenberg (ed.), "Iron-Sulfur Proteins" Vol. 1-3, Academic Press, New York (1973-1977). b) R. Cammack, D. P. E. Dickson and C. E. Johnson, ibid, pp283 (1977). c) C. W. Carter, J. Kraut, S. T. Freer, R. A. Alden, L. C. Sieker, E. Adman and L. H. Jensen, Proc. Natl. Acad. Sci., U.S.A., 69, 3526 (1972). d) D. P. E. Dickson, C. E. Johnson, R. Cammack, M. C. W. Evans, D. O. Hall and K. K. Rao, Biochem. J., 139, 105 (1974). e) T. G. Spiro (ed.), "Iron-Sulfur Proteins" Vol. 4, Wiley, New York (1982). f) R. C. Prince, M. W. W. Adams, J. Biol. Chem., 262, 5125 (1987). g) K. Fukuyama, Y. Nagahara, T. Tsukihara, Y. Katsube, T. Hase and H. Matsubara, J. Mol. Biol., 199, 183 (1988). 3)a) R. H. Holm, Acc. Chem. Res., 10, 427 (1977). b) R. H. Holm, Endeavour, 34, 38 (1975). 4)a) T. Herskovitz, B. A. Averill, R. H. Holm, J. A. Ibers, W. D. Phillips and J. F. Weiher, Proc. Natl. Acad. Sci., U.S.A., 69, 2437 (1972). b) B. A. Averill, T. Herskovitz, R. H. Holm and J. A. Ibers, J. Am. Chem. Soc., 95, 3523 (1973). c) C. L. Hill, J. Renaud, R. H. Holm and L. E. Mortenson, J. Am. Chem. Soc., 99, 2549 (1977). 5)a) E. J. Laskowski, J. G. Reynolds, R. B. Frankel, S. Foner, G. C. Papaefthymiou and R. H. Holm, J. Am. Soc. Chem., 101, 6562 (1979). b) M. J. Carney, G. C. Papaetthymiou, K. Spartalian, R. B. Frankel and R. H. Holm, J. Am. Chem. Soc., 110, 6084 (1988). 6) R. B. Frankel, T. Herskovitz, B. A. Averill, R. H. Holm, P. J. Krusic and W. D. Phillips, Biochem. Biophys. Res. Commun., 58, 974 (1974). 7) M. Hirobe, J. Synth. Org. Chem. Japan, 45, 755 (1987). 8) T. Itoh, T. Nagano and M. Hirobe, Tetrahedron Lett., 21, 1343 (1980). 9) T. Mashino, T. Nagano and M. Hirobe, Tetrahedron Lett., 24, 5113 (1983). 10)a) T. Itoh, T. Nagano and M. Hirobe, Chem. Pharm. Bull., 34, 2013 (1986). b) T. Nagano, K. Yoshikawa and M. Hirobe, Tetrahedron Lett., 21, 297 (1980). 11)a) H. Inoue and T. Nagala, J. Chem. Soc., Chem. Commun., (1986) 1177. b) H. Inoue, M. Suzuki and N. Fujimoto, J. Org. Chem., 44, 1722 (1979). c) H. Inoue and M. Sato, J. Chem. Soc., Chem. Commun., (1982) 1014. 12) J. A. Ibers and R. H. Holm, J. Am. Chem. Soc., 100, 5322 (1978).

(Received in Japan 19 August 1989)